Benha University Faculty of Engineering at Shoubra Civil Engineering Department Third Year Civil, Structures

Final 2nd Term Exam Date: 31 / 5 / 2017 Irrigation & Drainage Engineering CVS 325 Duration: 3 hours

- Answer all the following questions.
- Illustrate your answers with sketches when necessary.
- The exam consists of 2 pages.

Question (1) (15 + 10 = 25 Marks)

- A- State True or False & Correct the False:
 - 1) In semi-arid regions, the available rainfall is not sufficient for the plants' growth.
 - 2) The total volume of water in the world is varying due to climate changes.
 - 3) Capillary water is useful for the plant.
 - 4) Excess water in the soil is the moisture above W.P.
 - 5) Two-turn irrigation rotation must be used when cotton is cultivated.

B- *In the figure:*

- 1) State the type of the ground slope?
- 2) Fix the required constructions on the figure?
- 3) What is the minimum value for Y?
- 4) State the suitable i for the water line?
- 5) If W.L = (9.00) at Km 0.0, what is the required W.L in the branch?

Question (2) (25 Marks)

A branch canal has a length of 15 km, serves an area of 16,500 Feddan, and feeds 3 distributary canals. The land is cultivated as 40% rice and 55% Sharaki. *The data are in the following table:*

Distributory	Location	Area	Land Levels for Distributary Canals				
Distributary	(L: Left)	Served	at Km:				
Canal		(Feddan)	0.0	1.0	2.0	3.0	4.0
C 1	2.0, L	5000	(12.00)	(11.95)	(11.90)	(11.80)	(11.70)
C 2	6.0, L	4000	(11.60)	(11.55)	(11.50)/(10.50)	(10.45)	
C 3	10.0, L	5000	(11.40)	(11.20)	(11.00)	(10.80)	

- 1. For a suitable irrigation rotation, sketch a plan for the branch canal and its distributary canals showing the required constructions?
- 2. Draw the synoptic diagram <u>ONLY</u> for the distributary canal C1 for lift irrigation?
- 3. Calculate the area served for design at different sections of the branch canal, (compensation ratio = 20%)?
- 4. Determine the discharges at different sections of the branch canal, (F.W.D. = $50 \text{ m}^3/\text{Fed/day}$)?
- 5. What is the discharge at km 9.0 of the branch canal?

No. of Questions: 4Total Mark: 100 Marks

Question (3) (9+16 = 25 Marks)

A- Design the cross section at km 5.0 of a branch drain, (A.S. = 20,000 Feddan, D.F. = 15 m^3 /Fed/day, i = 12 cm/km, Z = 1.5 & b = 1.5 y)?

B- The figure shows the cross section at km 3.0 of a branch canal that has a discharge of 13 m³/s and i = 10 cm/km.

- At km 9.0 of the branch canal, find the bank level so that cut = fill?
- 2) Draw a typical cross section of the branch canal at km 9.0?
- 3) Find the velocity at km 9.0 of the branch canal?
- 4) Discuss this value of the velocity?

бm

<u>Question (4)</u> (25 Marks)

Examiners Board: Dr. Alaa El-Hazek, Dr. Mohamed Hassan

A Model Answer

<u>Question (1)</u> (15 + 10 = 25 Marks)A-

No	The Statement	T / F	Correction
1	In semi-arid regions, the available rainfall is not sufficient for the	Т	
	plants' growth.		
2	The total volume of water in the world is <u>varying</u> due to	F	constant
	climate changes.		
3	Capillary water is useful for the plant.	Т	
4	Excess water in the soil is the moisture above W.P.	F	F.C.
5	Two-turn irrigation rotation must be used when <u>cotton</u> is	F	rice
	cultivated.		

B-

- 1) The ground has steep slope.
- 2) The required constructions are shown on the figure.
- 3) The minimum value for Y is 1.25 m
- 4) The suitable slope, i = 30 cm/km
- 5) If W.L = (9.00) at Km 0.0, the required W.L in the branch is (8.80)

Question (2) (25 Marks)

1. <u>*Two - turn irrigation rotation:*</u>

2. Synoptic diagram for the distributary canal C1:

		C .					
Location	AS, Feddan		AS & Compensation, Feddan		AS Design,	Discharge, m ³ /s	
Km	Turn A	Turn B	A+0.2B	B+0.2A	Feddan	$\begin{array}{c} Q = AS_{Design} * \underline{(50*1.15)} \\ 24*60*60 \end{array}$	
2, L	<u>9,000</u>	<u>7,500</u>	<u>10,500</u>	<u>9,300</u>	<u>10,500</u>	<u>7.04</u>	
	4,000	7,500	5,500	8,300	8,300	5.56	
6, L	<u>4,000</u>	<u>7,500</u>	<u>5,500</u>	<u>8,300</u>	<u>8,300</u>	<u>5.56</u>	
	0	7,500	1,500	7,500	7,500	5.03	
10, L	<u>0</u>	<u>7,500</u>	<u>1,500</u>	<u>7,500</u>	<u>7,500</u>	<u>5.03</u>	
	0	2,500	500	2,500	2,500	1.68	

3. & 4. The area served for design & discharges at different sections of the branch canal:

5. <u>The discharge at km 9.0 of the branch canal:</u> 5.03 m³/s

Question (3)(9+16 = 25 Marks)A- Design the cross section at km 5.0 of a branch drain:

 $Q = A.S. \times D.F. = 20,000 * 15$ $\therefore Q = 3.47 \text{ m}^3/\text{sec}$ 24 * 60 * 60 Trapezoidal section, z = 1.5 $\therefore z:1 = 3:2$ A = b y + $[2 * (1/2) * y * 1.5y] = b y + 1.5 y^{2}$ & P = b + 2 $(y^{2} + 2.25 y^{2})^{1/2} = b + 3.61 y$ b = 1.5 v: $A = 1.5 y^2 + 1.5 y^2 = 3 y^2$ & P = 1.5 y + 3.61 y = 5.11 y $\therefore R = \frac{A}{P} = \frac{3 y^2}{5.11 y} = 0.587 y$ $Q = A * v = (1/n) * R^{3/2} * S^{1/2} * A$ $S = i = 12 / 10^{-5} \& 1 / n = 33$ $3.47 = 33^{*}(0.587)^{\frac{2}{3}} y^{\frac{2}{3}} (12^{*}10^{-5})^{\frac{1}{2}} 3 y^{2}$ $\therefore y^{8/3} = 4.57$ ∴y = 1.77 m ∴b = 2.66 m Take $b_m = 2.5 m$ A calculated = A_m ∴ b y + 1.5 y² = b_m y_m + 1.5 y_m² $(2.66*1.77) + 1.5*(1.77)^2 = 2.5 y_m + 1.5 y_m^2$ $1.5 y_m^2 + 2.5 y_m - 9.41 = 0$ $y_{\rm m}^{2} + 1.67 y_{\rm m} - 6.27 = 0$ $y = -b \pm [(b)^2 - (4*a*c)]^2$ 2*a $\therefore y_{\rm m} = -1.67 \pm \left[(1.67)^2 - (4*1*-6.27) \right]^{1/2}$ $\therefore y_m = 1.8 \text{ m}$ 2 x 1

B-

1) At km 9.0 of the branch canal, The levels are as shown in figure (i = 10 cm/km). Bank level = Berm level + y For simplicity, take ¹/₂ section as shown in figure. $A_{Cut} = (2.8*2) + (2*1/2*3) = 8.6 \text{ m}^2$ $A_{Fill} = (6*y) + (1/2*2y*y) = 6 \text{ y} + y2 \text{ m}^2$ $y^2 + 6 \text{ y} = 8.6$ $y^2 + 6 \text{ y} - 8.6 = 0$ $y = -b \pm [(b)^2 - (4*a*c)]^{1/2}$ 2*a $\therefore y = -6 \pm [(6)^2 - (4*1*-8.6)]^{1/2}$ 2×1 $\therefore y = 1.2 \text{ m}$ Bank level = (9.40) + 1.2 = (10.60)

2) The typical cross section of the branch canal at km 9.0:

3) $A = (5.6*1.5) + (2*1/2*2.25*1.5) = 11.78 \text{ m}^2$ \therefore v = Q / A = 13 / 11.78 = 1.1 m/s

4) v > 0.9 m/s, So, it will cause scour.

For non-silting non-scouring conditions, 0.3 < v < 0.9

We have to reduce the velocity by increasing the water area.